Eigenvalues and Eigenvectors

- Suppose you have a square matrix *A*. Let *A* represent a linear transformation that is multiplied by a vector *V* (i.e. let *A* be a transformation matrix upon another vector *V*).
 - If AV is parallel to V (i.e. the transformed vector is parallel to the original vector), then V is an **eigenvector** of A.
 - By convention, $V \neq \vec{0}$.
 - Consequently, the constant factor by which the magnitude of the vector has changed is the **eigenvalue** associated with V and A.
 - i.e. $AV = \lambda V$, where V represents the eigenvector and λ represents the associated eigenvalue.
- **Characteristic polynomial** = det $(A \lambda I)$
 - Where does this come from?
 - $AV = \lambda V \Rightarrow AV \lambda V = \vec{0} \Rightarrow (A \lambda I)V = \vec{0}$, where *I* is the identity matrix.
 - $(A \lambda I)V = \vec{0}$ iff $det(A \lambda I) = 0$.
 - $det(A \lambda I)$ is the **characteristic polynomial** of *A*.
 - For a two-by-two matrix $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$.
 - $\det(A \lambda I) = (a \lambda)(d \lambda) bc = \lambda^2 (a + d)\lambda + ab bc = 0$
 - $\lambda^2 (a+d)\lambda + ab bc = 0$
 - **Trace** T = a + d
 - **Determinant** D = ad bc
 - Characteristic equation can be written as $\lambda^2 T\lambda + D = 0$.
- How to find eigenvalues and eigenvectors:
 - 1. Find the characteristic polynomial of A (i.e. find det $(A \lambda I)$).
 - 2. Solve det $(A \lambda I) = 0$ to obtain a set of eigenvalues.
 - 3. For each eigenvalue, find an associated eigenvector by substituting back into the equation $(A \lambda I)V = \vec{0}$ and solving the system of equations.
 - The system of equations should be redundant (i.e. each individual equation in the system should be linearly dependent on all the others).
 - Note: Any eigenvector will do, as every eigenvalue associated with a specific eigenvector will just be multiples of each other (i.e. they will have the same direction). But for practical purposes, most people choose the

most simplified eigenvector (i.e. choose $\begin{pmatrix} 1 \\ -2 \end{pmatrix}$

$$\left(\begin{array}{c} 3\\ -6 \end{array} \right)$$
.

- Applications
 - Solving systems of differential equations
 - Transforming images (e.g. scaling, rotating, etc.)
 - Vibration analysis
 - Computational chemistry
 - Schrödinger equation
 - Molecular orbital theory