- Suppose you have a square matrix A. Let A represent a linear transformation that is multiplied by a vector V (i.e. let A be a transformation matrix upon another vector V).
- If $A V$ is parallel to V (i.e. the transformed vector is parallel to the original vector), then V is an eigenvector of A.
- By convention, $V \neq \overrightarrow{0}$.
- Consequently, the constant factor by which the magnitude of the vector has changed is the eigenvalue associated with V and A.
- i.e. $A V=\lambda V$, where V represents the eigenvector and λ represents the associated eigenvalue.
- \quad Characteristic polynomial $=\operatorname{det}(A-\lambda I)$
- Where does this come from?
- $A V=\lambda V \Rightarrow A V-\lambda V=\overrightarrow{0} \Rightarrow(A-\lambda I) V=\overrightarrow{0}$, where I is the identity matrix.
- $\quad(A-\lambda I) V=\overrightarrow{0}$ iff $\operatorname{det}(A-\lambda I)=0$.
- $\operatorname{det}(A-\lambda I)$ is the characteristic polynomial of A.
- For a two-by-two matrix $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$.
- $\operatorname{det}(A-\lambda I)=(a-\lambda)(d-\lambda)-b c=\lambda^{2}-(a+d) \lambda+a b-b c=0$
- $\lambda^{2}-(a+d) \lambda+a b-b c=0$
- Trace $T=a+d$
- Determinant $D=a d-b c$
- Characteristic equation can be written as $\lambda^{2}-T \lambda+D=0$.
- How to find eigenvalues and eigenvectors:
- 1. Find the characteristic polynomial of A (i.e. find $\operatorname{det}(A-\lambda I)$).
- 2. Solve $\operatorname{det}(A-\lambda I)=0$ to obtain a set of eigenvalues.
- 3. For each eigenvalue, find an associated eigenvector by substituting back into the equation $(A-\lambda I) V=\overrightarrow{0}$ and solving the system of equations.
- The system of equations should be redundant (i.e. each individual equation in the system should be linearly dependent on all the others).
- Note: Any eigenvector will do, as every eigenvalue associated with a specific eigenvector will just be multiples of each other (i.e. they will have the same direction). But for practical purposes, most people choose the most simplified eigenvector (i.e. choose $\binom{1}{-2} \operatorname{over}\binom{3}{-6}$).
- Applications
- Solving systems of differential equations
- Transforming images (e.g. scaling, rotating, etc.)
- Vibration analysis
- Computational chemistry
- Schrödinger equation
- Molecular orbital theory

